VB Tutor VB.NET 2022 Tutorial VB2019 Tutorial VB6 Tutorial VB Sample Code About Us
Visual Basic Sample Code

Future Value Calculator

Calculate the future value of your investments with compound interest


Understanding Future Value

The concept of future value is related to time value of money. For example, if you deposit your money in a bank as a savings account or a fixed deposit account for a certain period of time, you will earn a certain amount of money based on the compound interest computed periodically, and this amount is added to the principal if you continue to keep the money in the bank. Interest for the following period is now computed based on the initial principal plus the interest (the amount which becomes your new principal). Subsequent interests are computed in the same way.

For example, let's say you deposited $1000 in a bank and the bank is paying you 5% compound interest annually. After the first year, you will earn an interest of $1000×0.05=$50. Your new principal will be $1000+$1000×0.05=$1000(1+0.05)=$1000(1.05)=$1050.

After the second year, your new principal is $1000(1.05)×1.05=$1000(1.05)2 =$1102.50. This new principal is called the future value.

The Future Value Formula

Following the above calculation, the future value after n years will be:

FV = PV × (1 + i / 100)n

Where:

  • FV = Future Value
  • PV = Present Value (initial investment)
  • i = Interest rate per period (as a percentage)
  • n = Number of periods

Interactive Future Value Calculator

Implementation Code Examples

Visual Basic 6 Implementation

Public Function FV(PV As Variant, i As Variant, n As Variant) As Variant
' Formula to calculate Future Value (FV)
' PV denotes Present Value
FV = PV * (1 + i / 100) ^ n
End Function

Private Sub compute_Click()
' This procedure will calculate Future Value
Dim FutureVal As Currency
Dim PresentVal As Currency
Dim interest As Variant
Dim period As Variant

' Get user input
PresentVal = PV.Text
interest = rate.Text
period = years.Text

' Calculate Future Value
FutureVal = FV(PresentVal, interest, period)

' Format and display result
Label5.Caption = Format(FutureVal, "currency")
End Sub

Private Sub Form_Load()
' Initialize default values
PV.Text = "1000"
rate.Text = "5"
years.Text = "5"
End Sub

This VB6 code demonstrates the implementation of a Future Value calculator with a simple form containing text boxes for input and a label for displaying the result.

VB.NET Implementation

Public Class FVCalculator

    Private Function CalculateFV(pv As Decimal, rate As Decimal, periods As Integer) As Decimal
        ' Calculate future value using compound interest formula
        Return pv * Math.Pow(1 + (rate / 100), periods)
    End Function

    Private Sub btnCalculate_Click(sender As Object, e As EventArgs) Handles btnCalculate.Click
        Try
            ' Get input values
            Dim presentValue As Decimal = Decimal.Parse(txtPresentValue.Text)
            Dim interestRate As Decimal = Decimal.Parse(txtInterestRate.Text)
            Dim numPeriods As Integer = Integer.Parse(txtPeriods.Text)
            
            ' Calculate future value
            Dim futureValue As Decimal = CalculateFV(presentValue, interestRate, numPeriods)
            
            ' Display result with formatting
            lblResult.Text = futureValue.ToString("C2")
            
            ' Calculate total interest earned
            Dim totalInterest As Decimal = futureValue - presentValue
            lblInterest.Text = totalInterest.ToString("C2")
            
        Catch ex As Exception
            MessageBox.Show("Please enter valid numeric values", "Input Error", 
                            MessageBoxButtons.OK, MessageBoxIcon.Error)
        End Try
    End Sub

    Private Sub FVCalculator_Load(sender As Object, e As EventArgs) Handles MyBase.Load
        ' Set default values
        txtPresentValue.Text = "1000"
        txtInterestRate.Text = "5"
        txtPeriods.Text = "5"
    End Sub
End Class

This VB.NET implementation includes error handling and more robust data processing. It demonstrates modern practices like using the Decimal type for financial calculations and Try-Catch blocks for error handling.

JavaScript Implementation (Used on this page)

function calculateFV() {
    // Get input values
    const pv = parseFloat(document.getElementById('presentValue').value);
    const rate = parseFloat(document.getElementById('interestRate').value);
    const periods = parseInt(document.getElementById('periods').value);
    
    // Validate inputs
    if (isNaN(pv) || isNaN(rate) || isNaN(periods) || pv <= 0 || rate <= 0 || periods <= 0) {
        alert('Please enter valid positive numbers for all fields');
        return;
    }
    
    // Calculate future value
    const fv = pv * Math.pow(1 + (rate / 100), periods);
    const interest = fv - pv;
    
    // Format and display results
    document.getElementById('resultPV').textContent = formatCurrency(pv);
    document.getElementById('resultRate').textContent = rate + '%';
    document.getElementById('resultPeriods').textContent = periods;
    document.getElementById('resultFV').textContent = formatCurrency(fv);
    document.getElementById('resultInterest').textContent = formatCurrency(interest);
    
    // Show result container
    document.getElementById('resultContainer').style.display = 'block';
    
    // Generate growth chart
    generateGrowthChart(pv, rate, periods);
}

function formatCurrency(value) {
    return '$' + value.toFixed(2).replace(/\d(?=(\d{3})+\.)/g, '$&,');
}

function generateGrowthChart(pv, rate, periods) {
    const canvas = document.getElementById('growthChart');
    const ctx = canvas.getContext('2d');
    
    // Clear previous chart
    ctx.clearRect(0, 0, canvas.width, canvas.height);
    
    // Calculate data points
    const dataPoints = [];
    for (let i = 0; i <= periods; i++) {
        dataPoints.push(pv * Math.pow(1 + (rate / 100), i));
    }
    
    // Draw chart
    const maxValue = Math.max(...dataPoints);
    const chartHeight = canvas.height - 40;
    const chartWidth = canvas.width - 60;
    const barWidth = chartWidth / periods;
    
    // Draw axes
    ctx.strokeStyle = '#333';
    ctx.lineWidth = 1;
    ctx.beginPath();
    ctx.moveTo(40, 20);
    ctx.lineTo(40, chartHeight);
    ctx.lineTo(canvas.width - 20, chartHeight);
    ctx.stroke();
    
    // Draw bars and labels
    ctx.fillStyle = '#5c6bc0';
    ctx.font = '12px Poppins';
    ctx.textAlign = 'center';
    
    for (let i = 0; i < dataPoints.length; i++) {
        const barHeight = (dataPoints[i] / maxValue) * (chartHeight - 30);
        const x = 40 + (i * barWidth) + (barWidth / 2);
        const y = chartHeight - barHeight;
        
        // Draw bar
        ctx.fillRect(x - (barWidth * 0.8 / 2), y, barWidth * 0.8, barHeight);
        
        // Draw value label
        ctx.fillStyle = '#333';
        ctx.fillText('Y' + i, x, chartHeight + 20);
        
        // Draw value at top
        if (i > 0) {
            ctx.fillText(formatCurrency(dataPoints[i]), x, y - 5);
        }
        
        ctx.fillStyle = '#5c6bc0';
    }
    
    // Draw chart title
    ctx.fillStyle = '#333';
    ctx.font = 'bold 14px Poppins';
    ctx.textAlign = 'center';
    ctx.fillText('Investment Growth Over Time', canvas.width / 2, 15);
    
    // Show chart container
    document.getElementById('chartContainer').style.display = 'block';
}

function openTab(evt, tabName) {
    // Hide all tab contents
    const tabContents = document.getElementsByClassName("tab-content");
    for (let i = 0; i < tabContents.length; i++) {
        tabContents[i].classList.remove("active");
    }
    
    // Remove active class from all buttons
    const tabButtons = document.getElementsByClassName("tab-btn");
    for (let i = 0; i < tabButtons.length; i++) {
        tabButtons[i].classList.remove("active");
    }
    
    // Show current tab and set button as active
    document.getElementById(tabName).classList.add("active");
    evt.currentTarget.classList.add("active");
}

This JavaScript implementation powers the interactive calculator on this page. It includes input validation, currency formatting, and a visualization of the investment growth over time.

Understanding the Calculation

Compound Interest

Compound interest is the addition of interest to the principal sum of a loan or deposit, where the interest that has been added also earns interest.

Compounding Periods

The number of compounding periods greatly affects the total interest earned. More frequent compounding results in higher returns.

Interest Rate Impact

Small differences in interest rates can lead to significant differences in future value over long periods.

Present Value

The initial amount invested is crucial as it forms the base on which all future compounding occurs.

Practical Example

Consider an initial investment of $10,000 with an annual interest rate of 7%:

  • After 10 years: $19,671.51
  • After 20 years: $38,696.84
  • After 30 years: $76,122.55

This demonstrates the power of compounding over longer periods - the investment more than doubles between years 20 and 30.